论文部分内容阅读
为更好的认识不规则小行星引力场的特点,本文采用多面体模型法对Eros433小行星的引力场进行计算,并由此分析了小行星引力场的分布特点.首先介绍了多面体模型的概念和小行星多面体模型的计算方法.然后,应用高斯公式和格林公式,通过两次积分变换将引力势函数的三重积分转化为一重积分,并将其应用到多面体模型中,推导了多面体模型的引力势函数、引力加速度和拉普拉斯算子的计算公式.最后,计算并分析了Eros433小行星引力场的分布特点,应用伪势能曲面和零速度曲线分析了小行星周围的轨道动力学环境和平衡点的位置情况,通过与JPL实验室公布的数据对比表明,本方法最大计算误差为1.52%,具有较高的精度.
In order to better understand the characteristics of the gravitational field of an irregular asteroid, this paper uses the polyhedral model method to calculate the gravitational field of the asteroid Eros433, and analyzes the distribution characteristics of the asteroid gravitational field.First, the concept of polyhedral model and Then, the Gaussian formula and Green’s formula are used to transform the triple integral of the gravitational potential function into one integral by two integral transformations, and apply it to the polyhedron model, and derive the gravitational potential of the polyhedral model Function, gravitational acceleration and Laplace operator.Finally, the distribution characteristics of the gravitational field of the Eros433 asteroid are calculated and analyzed, and the orbital dynamics environment and balance around the asteroid are analyzed using the pseudo-potential energy surface and the zero velocity curve The location of the spot, compared with the data published by JPL Laboratory, shows that the maximum calculation error of the method is 1.52%, which has high precision.