论文部分内容阅读
肝脏分割对于肝肿瘤肝段切除及肝移植体积测量具有重要的临床价值。由于在CT影像中肝脏与邻近脏器的灰度值相似性很高,因此对肝脏区域的三维自动分割是一项具有挑战性的难题。为解决精准肝脏分割的问题,提出一种新型的深度全卷积网络结构3DUnet-C2。该结构充分利用肝脏CT图像的三维空间信息,并有效结合肝脏区域的浅层特征和深层特征。特别地,还提出一种新的3DUnet-C2网络训练策略,通过选取清晰图像,并从图像中截取肝脏区域作为样本进行训练的方式,得到初步3DUnet-C2模型权重,并使用该权重来初始化3DU