论文部分内容阅读
针对现有音素识别系统识别准确率不高、建模方法表征能力不强且易陷入局部最优解等问题,提出了一种基于层次结构深度信念网络(deepbeliefnetwork,DBN)的音素识别新方法.该方法由基于层次结构DBN的瓶颈特征以及基于DBN的音素分类器两部分组成:其中的瓶颈特征能够充分利用DBN能够处理长时段语音、监督性的提取方法等特性;而基于DBN的音素分类器则具有更强的建模和表征能力.因此,将两者结合在一起能够在提取低维、监督性特征的同时,利用DBN更加有效地对音素后验概率进行识别.在TIMIT数据库上进行的实