论文部分内容阅读
离散小波变换中的位移可变性严重影响了小波域运动估计的精度,为了减弱在动态信号估计中该可变性的影响,构造出一种新的二元树复小波结构,并依据小波低频子带和高频子带对移变性敏感性不同的特性,提出一种优化运动估计方法.将此方案应用于视频序列中图像的运动估计之中,实验结果表明新算法有更高的估计精度,提前判定不动块,减少了不必要的搜索时间,降低了运算复杂度.预测帧的峰值信噪比(PSNR)比基于二元树复小波的值有所提高,对在空间复杂度和运动复杂度都较高的视频序列的编码更有效.
Displacement variability in discrete wavelet transform has seriously affected the accuracy of motion estimation in wavelet domain. In order to reduce the influence of this variability in dynamic signal estimation, a new binary tree complex wavelet structure is constructed. According to wavelet low frequency subband Which is different from high-frequency subbands in sensitivity to shift, proposes an optimized motion estimation method. This scheme is applied to the motion estimation of video sequences. Experimental results show that the new algorithm has higher estimation accuracy, Judgment of immobile block reduces the unnecessary search time and reduces the computational complexity.The PSNR of the predicted frame is higher than that based on binary tree complex wavelet, Encoding of higher degree video sequences is more efficient.