论文部分内容阅读
基于神经网络的结构,结合模糊控制的理论,提出了一种模糊神经网络在线学习自适应结构,针对模糊神经网络控制器一般存在着在线修正权值计算量大,权值过度修正容易导致系统振荡等缺点,采用变结构变速率的学习方法对网络结构参数权值进行修正。将参数调整后的控制器模型应用于伺服系统中,并与传统的ITAE三阶无静差最优控制进行比较,仿真试验表明该控制器不但能够提高系统的控制品质,同时可以消除输出力矩对被控对象的扰动,具有很好的控制效果。