论文部分内容阅读
针对传统的协同过滤算法没有考虑到不同用户之间相似度的差异以及用户对项目的评分时间等因素的影响,提出了一种基于加权相似度显隐式反馈的协同过滤算法:先获取用户的显式和隐式反馈评分信息以及用户-项目的评分时间信息。再对评分信息进行基于时间的加权处理,并对传统的相似度计算方法进行修改,引入相关度因子。最终根据预测公式获得用户的推荐结果。实验仿真表明算法在平均绝对误差和精确率两个指标上有了一定的提高,并在一定程度上提高了推荐算法的准确性。