论文部分内容阅读
波纹圈弹簧绝大多数是在大挠度情况下工作的,它的负载—变形特性是非线性的。如用线性公式计算,将会产生很大的误差,影响弹簧的正常工作,例如,引起弹簧在密封面上比压力的不足等,因此有必要研究非线性波纹圈弹簧的计算。由于研究的是空间曲杆的大挠度问题,我们采用J.O.Almen和A.Laszlo研究非线性碟形弹簧的方法,根据弹簧的工作情况,作出近似的简化假定,然后分析弹簧的刚度及强度问题。简化假定 (1)变形前后,弹簧轴线都是某个圆柱面上的波纹曲线; (2)变形过程中,弹簧轴线长度不变; (3)略去摩擦力,全部外力在圆柱面内,故不在圆柱面内的内力较小,可略去不计。
Most of the corrugated ring springs work under the condition of large deflection, and its load-deformation characteristics are non-linear. If using linear formula, it will produce a great error, affecting the normal operation of the spring, for example, causing the spring in the sealing surface than the lack of pressure, it is necessary to study the calculation of nonlinear bellows spring. Because of the large deflection of the space bar, we study the nonlinear disc spring method by J.O. Almen and A. Laszlo. According to the working condition of the spring, we make approximate simplifying assumptions, and then analyze the stiffness and strength of the spring. Simplify the assumption (1) before and after deformation, the spring axis is a cylindrical surface of the corrugated curve; (2) the deformation process, the spring axis length unchanged; (3) omitted friction, all external forces in the cylindrical surface, so Not within the cylindrical surface of the smaller internal force, can be negligible.