论文部分内容阅读
We describe the microfabrication of 85Rb vapour cells using a glass-silicon anodic bonding technique and in situ chemical reaction between rubidium chloride and barium azide to produce Rb.Under controlled conditions,the pure metallic Rb drops and buffer gases were obtained in the cells with a few mm3 inteal volumes during the cell sealing process.At an ambient temperature of 90 ℃ the optical absorption resonance of 85Rb D1 transition with proper broadening and the corresponding coherent population trapping (CPT) resonance,with a signal contrast of 1.5% and linewidth of about 1.7 kHz,have been detected.The sealing quality and the stability of the cells have also been demonstrated experimentally by using the helium leaking detection and the after-9-month optoelectronics measurement which shows a similar CPT signal as its original status.In addition,the physics package of chip-scale atomic clock (CSAC) based on the cell was realized.The measured frequency stability of the physics package can reach to 2.1×10-10 at one second when the cell was heated to 100 ℃ which proved that the cell has the quality to be used in portable and battery-operated devices.