地铁瓦斯隧道安全防控管理体系研究与应用

来源 :城市轨道交通研究 | 被引量 : 0次 | 上传用户:lcg512
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对地铁工程穿越瓦斯地层时所面临的危险源种类繁多、安全管理难度大等难题,利用物联网、流媒体和无线传输等技术,集成瓦斯自动检测、盾构施工实时监控、人员定位等专业应用,提出了全线覆盖、全员参与、全过程管理的集约化管控模式,构建了各参与方共同监管的地铁瓦斯隧道安全防控管理体系.该体系已成功应用于成都轨道交通6号线三期工程的全过程建设中.通过线上、线下联动管理的方式,对地铁线路穿越瓦斯地层时土建施工阶段的危险源进行实时智能化监测、迅速响应和及时处置,有效提高了施工过程中的安全风险管理水平,节约了管理成本.
其他文献
以高速磁浮交通OCS(运行控制系统)和城市轨道交通FAO(全自动运行)系统为着眼点,分析了两类系统的系统构成及运营场景,剖析了两类系统的差异性.两类系统运营场景的差异性主要体现在固有性、功能性和过程性等3方面,且不同交通系统之间存在可借鉴之处.
针对某地铁列车在试验及运营中发生的典型IC(输入输出)模块硬件及软件故障,深入分析问题原因,并给出具体的解决对策.经实验室和批量装车验证,故障解决方法可行有效.
基于全自动无人驾驶车辆基地的布置要求,以苏州轨道交通7号线为工程背景,对既有车辆基地改扩建为无人驾驶车辆基地的方案进行研究,探索无人驾驶车辆基地总平面布置思路和方案,总结既有车辆基地改造为具有无人驾驶功能的车辆基地的设计要点.结果 表明,具有无人驾驶功能的车辆基地改造设计方案,及其3种转换轨设计方案,可有效保障全自动无人驾驶车辆安全高效运营,亦可最大化集约利用土地资源.
高速磁浮车辆悬浮间隙传感器为悬浮控制系统提供必要的间隙信息.相对定位传感器则分别为高速磁浮车辆牵引和运行控制提供同步直线电机次级极相角信息和速度信息.在分析两者应用差异的基础上,讨论了检测线圈结构设计、电路结构设计、动态特性、抗电磁干扰与抗温度漂移等共性技术.对悬浮间隙传感器而言,需弱化齿槽效应;对相对定位传感器而言,则需强化齿槽效应,以抑制悬浮间隙波动和减少传感器过接缝时的信号畸变程度.
基于车车通信的TACS(列车自主运行系统)在既有列车运行控制系统的基础上,突破传统联锁的进路理念,通过线路资源管理方式,实现与联锁系统进路安全防护一致的列车运行路径防护.从线路资源化理念出发,研究线路资源的划分和管理方式,并从基于车车通信的TACS层面分析线路资源管理的关键技术和主要功能.
为解决传统维保存在的诸多问题,进一步优化运维方式、降低维保成本、提升管理效率,以杭州至海宁城际铁路(以下简为“杭海城际铁路”)智能维保项目为切入点开展相关研究.将智能维保划分为数字化、自动化及智能化3个方面,强调了数据接口、数据共享的重要性,重点阐述了生产计划管理、设施设备管理、生产工具管理、人力资源管理及设施设备智能检测的建设思路,提出了对维保自动化、维保智能化的思考.研究成果已成功运用于杭海城际铁路智能维保建设中.
结合《中国城市轨道交通智慧城轨发展纲要》,分析了智能列车运行、智能运维安全、智能基础设施对城市轨道交通车辆基地建设的要求,并从自动化场段、智能运维、智能机电设备等3个方面提出车辆基地的智慧化解决方案.
为有效解决地铁车辆转向架研发面临的需求适应性差、零部件重用率低等问题,基于多属性决策、关联设计等技术,提出一种地铁转向架柔性产品平台设计方法.该设计方法定义了地铁转向架柔性产品平台的内涵,分析了基于多属性决策方法的通用模块构建方法,以及基于关联设计技术的柔性模块构建方法.以A型地铁转向架产品为例,验证了该方法的有效性、可行性与实用性.
以地铁车站能耗和CO2排放量最多的车站通风空调系统作为研究对象,确定其CO2排放量计算方法,并探究其CO2排放特征.建立了基于生命周期理论的地铁车站通风空调系统CO2排放量计算模型.以计算模型和工程实例参数为依据,计算分析了典型车站通风空调系统生命周期CO2排放量.结果 表明,案例车站的CO2排放强度明显高于普通建筑,每年单位制冷量所产生的CO2排放量达917.39 kg/(kW·年);CO2排放量在运行阶段生命周期中占比最大,达97.87%;冷源水系统在各子系统中排放量占比最大,为39.42%.
在悬挂式PRT(个人快速运输)系统已有结构的基础上,对该系统转向架构架进行结构轻量化优化研究.运用拓扑优化相对密度法中的SIMP(固体各向同性材料惩罚模型)方法进行走行轮安装座拓扑优化及构架主要板梁厚度优化,并对优化前后的仿真结果进行对比分析.根据构架不同区域优化后的应力、应变结果对构架参数进行调整,并在考虑构架实际结构及功能性结构的前提下控制优化参数以得到构架整体优化结果.结果 显示,构架优化区域体积大幅减少,轻量化结果明显,且整体结构强度良好,能满足列车在最恶劣工况下安全运行.