论文部分内容阅读
在线运动目标跟踪是目前模式识别领域的一个难点问题,目标物体角度、姿态、远近距离变化以及遮挡等给鲁棒在线跟踪算法提出了苛刻的要求,单一算法很难有效处理所有问题.多方法集成是实现鲁棒在线跟踪的一种有效手段,为此提出了一个集成on-line boosting、基于归一化互相关的模板匹配法和粒子群优化算法的自适应目标跟踪算法框架.其中,on-line boosting是基本的跟踪算法;基于归一化互相关的模板匹配法有效避免了on-line boosting过多的错误更新;而基于粒子群优化算法的跟踪策略提高了系