论文部分内容阅读
Studies on determining and analyzing the crushing response of tubular structures are of significant interest,primarily due to their relation to safety.Several aspects of tubular structures,such as geometry,material,configuration,and hybrid structure,have been used as criteria for evaluation.In this review,a comprehensive analysis of the important findings of extensive research on understanding the crushing response of thin-walled tubular structures is presented.Advancements in thin-walled structures,including multi-cell tube,honeycomb and foam-filled,multi wall,and functionally graded thickness tubes,are also discussed,focusing on their energy absorption ability.An extensive review of experimentation and numerical analysis used to extract the deformation behavior of materials,such as aluminum and steel,against static and dynamic loadings are also provided.Several tube shapes,such as tubes of uniform and nonuniform (tapered) cross sections of circular,square,and rectangular shapes,have been used in different studies to identify their efficacy.Apart from geometric and loading parameters,the effects of fabrication process,heat treatment,and triggering mechanism on initiating plastic deformation,such as cutouts and grooves,on the surface of tubular structures are discussed.