论文部分内容阅读
以主元分析方法和新型ESN(回声状态网络)算法为核心,研究了转炉终点静态预测模型。通过对某钢厂转炉生产数据的主元分析,建立了ESN模型,同时将ESN模型与传统的BP和RBF神经网络模型进行了对比研究。结果表明,使用ESN建立的模型比传统的BP网络模型和RBF网络模型,在钢水温度预测方面精度分别提高了0.85%和0.45%,在钢水碳质量分数预测方面精度分别提高了O.45%和0.19%,能够有效的对转炉终点碳含量和温度进行预测,从而为转炉炼钢过程提供更准确的操作指导。