论文部分内容阅读
车辆在执行换道行为时,由于受到较多环境因素影响,难以准确进行换道识别和预测.为解决这一问题,提出一种基于梯度提升决策树(GBDT)进行特征变换的融合换道决策模型,以仿真驾驶员在高速公路上自由换道时的决策行为.采用主体车辆与目标车道后车的碰撞时间tlag及车辆周围交通状态变量进行车辆换道行为的建模分析,在NGSIM数据集上对建立的融合换道决策模型进行参数标定和模型测试.实验结果表明:融合换道决策模型以95.45%的预测准确率超越支持向量机、随机森林和GBDT等单一的换道决策模型,获得了最突出的表现.变量分析