论文部分内容阅读
针对时滞减振控制的非线性悬架系统,建立其二自由度系统的动力学方程。首先,对动力系统进行了数值模拟,通过不同控制参数下系统的动力学行为的分岔图、相轨迹、庞加莱截面、功率谱图来研究时滞非线性悬架系统的混沌动力学行为。研究表明,基于系统参数和外在激励,选择适当的时滞控制参数,可避免系统在运行过程中出现混沌现象,改善系统的运行品质。然后,以主系统幅值均方根为目标函数,对系统进行优化得出减振效果最优时的时滞和反馈增益系数,并与无时滞时非线性悬架系统的主振幅响应进行比较。结果表明,时滞对非线性悬架系统减振和系统品质的改善是能够同时实现的。最后,研究了时滞控制参数变化对系统动力学行为的影响,研究发现,同一系统在不同时滞参数下其分岔形式以及通往混沌的形式具有着多样性,会出现倍周期分岔、Hopf分岔、阵发性分岔以及它们各自通往混沌的不同演化模式,这为实现悬架参数的优化控制提供了理论依据。
Aiming at the nonlinear suspension system with delay damping control, the dynamic equations of the two degree of freedom system are established. Firstly, the dynamical system is numerically simulated, and the chaotic dynamics of the nonlinear system with time-delay is studied by the bifurcation diagram, phase trajectory, Poincaré section and power spectrum of the system under different control parameters. . The research shows that selecting proper control parameters based on system parameters and extrinsic stimuli can avoid the chaos phenomenon in the system during operation and improve the running quality of the system. Then, taking the root mean square of the main system as the objective function, the system is optimized to obtain the time delay and feedback gain coefficient with the best damping effect. The main amplitude response of the nonlinear suspension system without time delay Compare The results show that the time delay can improve the vibration damping and system quality of the nonlinear suspension system simultaneously. Finally, we study the influence of time-varying control parameters on the dynamic behavior of the system. It is found that the bifurcation forms and the chaotic forms of the same system under different time-delay parameters are diverse, Hopf bifurcation, paroxysmal bifurcation and their different evolution modes leading to chaos, which provide the theoretical basis for the optimization control of suspension parameters.