论文部分内容阅读
为了实现用计算机和机械设备进行猪肉颜色自动化分级,本研究对猪肉样品照片进行图像处理,提取其中颜色特征参数,并进行色彩空间参数换算。通过对基于核函数的3种SVM多分类方法进行比较,选择出最适合于猪肉颜色的SVM多分类评定方法。对比结果显示,采用单独的HSV数据及RGB与HSV联合数据进行分类,分类效果好于RGB数据。RBF核函数“二叉树”SVM多分类模型,经过样本学习后,其分类的正确率可达98%;同时考虑经验风险和置信风险,其分类正确率达80%。