论文部分内容阅读
针对硅锰合金埋弧熔炼过程的特点,提出了一种基于自适应递推最小二乘支持向量机(ARLSSVM)的合金成分在线预测模型。该模型以实测工况参数为数据集,当新增一个样本时,分别采用增长记忆递推算法、限定记忆递推算法和缩减记忆递推算法训练最小二乘支持向量机(LSSVM),有效避免高维矩阵的求逆,加快模型更新的速度。然后通过自适应模型匹配算子选择相应的预测输出模型,提高模型的预测精度。将此模型应用于30MVA硅锰合金埋弧炉冶炼过程合金成分在线预测,实际生产运行数据验证了此方法的有效性。