不确定性采样相关论文
针对目前基于机器学习的流识别仍然存在着建立分类模型需要大量适用的训练数据,训练数据的标记需要依赖领域专家,因而导致工作量及难......
针对样本集中的类不平衡性和样本标注代价昂贵问题,提出基于不确定性采样的自训练代价敏感支持向量机。不确定性采样通过支持向量......
针对工业互联网结构复杂和已知攻击样本少导致的入侵检测准确率低的问题,文章提出一种基于主动学习的入侵检测系统(Active Learnin......
在分析单一MU(Most Uncertainty)采样缺陷的基础上,提出一种"全局最优搜寻"方法 GOS(Global Optimal Search),并结合MU共同完成查......
为解决网络样本标注的难题,实现多种网络流量环境中的主动学习,提出一种基于支持向量机后验概率的网络流量识别方法。结合支持向量机......
主动学习在机器学习、数据挖掘、模式识别等领域备受业内人士的关注,主要解决标记实例开销大的问题。主动学习方法首先使用少量已......
类别不平衡数据集分类是机器学习和模式识别中的一个热点研究问题。类别不平衡数据集存在于许多实际工程领域,如有色冶金过程的故......
随着软件技术的迅速发展,软件产品的使用渗透到社会的各个方面。因此,软件质量保障对于大型软件项目尤为重要,如果无法及时发现并......