论文部分内容阅读
针对KNN算法样本相似度计算量大,计算冗余度高而效率低下的问题,提出了基于超球区域划分的改进KNN算法。该算法是在经典KNN算法上的改进。通过构造等半径超球集合,将所有训练样本分配到相应的超球中,因此一个待测样本的类别可以通过其最近邻的k个超球内的训练样本集来确定。为保证运算效率,设计算法去寻找最优的超球半径r。实验结果表明,基于超球区域划分的改进KNN算法与经典的传统KNN算法在效率和性能方面有较大的提高。