论文部分内容阅读
快速同时定位与建图(FastSLAM)算法中的重采样过程会带来粒子退化和粒子多样性减弱问题,为了改进算法的性能、提高估计精度,针对FastSLAM算法的特点,设计了一种改进的FastSLAM算法,将FastSLAM算法中的粒子滤波部分用自适应粒子群优化算法来代替,并且引入了粒子的筛选区间,通过改善算法初期的粒子分布情况,以及采用交叉变异操作这种自适应优化策略来对粒子种群进行调整.最后在MATLAB仿真平台针对三种算法进行了对比并验证改进后算法的优越性,实验结果表明基于自适应粒子群优化的FastSLA