论文部分内容阅读
结合主元分析(PCA)和径向基函数(RBF)神经网络,建立了地下水动态模拟与软测量预测模型。通过主元分析法提取主要成分,实现数据预处理;将选取的主要成分作为RBF神经网络的输入;采用k均值聚类算法确定RBF网络隐含层参数,并用递进最小二乘法确定输出层权值。仿真结果表明,该模型优化了网络结构,提高了预测精度。