论文部分内容阅读
依据我国湖库富营养化评价标准和支持向量机(SVM)原理及方法,构建基于交叉验证(CV)的CV-SVM湖库营养状态识别模型,采用随机内插的方法在各分级标准阈值间生成训练样本和测试样本,在达到预期识别精度后将模型运用于全国24个湖库营养状态的识另q,并与投影寻踪法、评价指标法和神经网络评价法的识别结果进行比较。结果表明:基于线性核函数的CV—SVM模型对于随机生成的训练样本和测试样本的正确识别率分别达到97.8%和97.3%(5次平均),对全国24个湖库营养状态的识别结果与采用投影寻踪法、评价指标法和神经网络