论文部分内容阅读
针对传统星载合成孔径雷达(SAR)工作模式反演方法在识别准确率和时效性上存在局限性的问题,根据SAR信号的特点,提出基于一维卷积神经网络的星载SAR工作模式识别模型.该模型以星载SAR信号脉冲峰值幅度作为输入,利用卷积神经网络的自主学习和模式识别能力,避免了传统方法的人为影响因素,能够学习原始信号更具有代表性的特征,最终实现星载SAR工作模式的有效识别.在设计一维卷积神经网络结构时,参考了现有性能较优的卷积神经网络,根据网络训练过程中准确率和损失值的反馈,调整设置了较优的参数以训练得到具有良好识别性能的模型.基于仿真数据的对比实验表明,该模型相较于传统反演方法具有更高的识别准确率,同时对于主旁瓣信号和不同侦收条件均具有较优的鲁棒性和抗噪性.