论文部分内容阅读
提出了一种基于操作方式进行编码和解码的量子遗传算法,并将其用于求解一种典型的NP-hard组合优化问题即Job-Shop调度问题。该算法采用量子比特方式构造染色体,增加了算法的种群多样性和计算并行性;采用量子旋转门操作实现种群进化,有效地提高了算法的收敛速度。用基准调度问题实例对该算法进行的测试结果表明:该量子遗传算法与改进的遗传算法相比较有更好的优化性能。