论文部分内容阅读
Simulation models of traction driver systems were established using SIMULINK,according to the actual structure and parameters of China Railway High-Speed 2 (CRH2) and China Railway High-Speed 3 (CRH3) trains.In these models,the traction motor adopts transient current control and an indirect rotor magnetic field orientation vector control strategy,and the traction converter uses sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) methods.After these models are transformed in VC++ program,and a friendly interface and data processing system are constructed,simulation software is obtained for CRH2 and CRH3 traction driver systems.On this basis,the operational performance of a traction converter was simulated and analyzed at different train speeds and in different conditions.The simulation results can provide a reference for the actual design and production of a traction converter.
Simulation models of traction driver systems were established using SIMULINK, according to the actual structure and parameters of China Railway High-Speed 2 (CRH2) and China Railway High-Speed 3 (CRH3) trains.In these models, the traction motor applies transient current control and an indirect rotor magnetic field orientation vector control strategy, and the traction converter uses sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) methods. These latter models were transformed in VC ++ program, and a friendly interface and data processing system are constructed, simulation software is obtained for CRH2 and CRH3 traction driver systems. On this basis, the operational performance of a traction converter was simulated and analyzed at different train speeds and in different conditions. the simulation results can provide a reference for the actual design and production of a traction converter.