论文部分内容阅读
在文本分类中获得有类别标记训练样本的代价是很高昂的,本文针对这个问题对传统的模糊聚类方法进行改进,提出模糊划分聚类方法FPCM,将聚类的无监督性和样本的先验知识结合起来,通过相似度度量聚类相关文本,取得比较客观的簇和少量标记文本,为监督学习找到分类依据,并结合朴素贝叶斯增量学习方式进行分类器的学习.本文进一步用估计分类误差损失的方法平衡选取候选样本,提高了分类准确率,实现了应用范围更加广泛的无标记文本分类学习模型.