论文部分内容阅读
针对单传感器煤矿数据预测存在的片面性问题,提出将信息融合技术与相空间重构技术相结合的多传感器煤矿数据的预测模型,对井下多种传感器,包括瓦斯浓度、风速、温度传感器,进行融合预测。以多类传感器时序数据为研究对象,首先利用信息融合的方法分别对各类传感器数据依次进行数据层融合、特征层融合;然后采用关联积分方法对两级融合之后的传感器数据分别确定相重构的时间延迟和嵌入维数两个参数;最后结合多变量相空间重构技术,将各类传感器数据融合重构相空间,运用基于K-Means聚类的加权一阶局域法构建多传感器数据的预测模型。实验结