论文部分内容阅读
Accurate assessment of surface suspended sediment concentration(SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continuous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg/l were carried out using an Ava Field-3 spectrometer. The results indicated the good correlation between water SSSC and spectral reflectance(Rrs) was obtained in the spectral range of 726–900 nm. At SSSC greater than 2700 mg/L, the 740–900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The best correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed(R2 = 0.992). The novel cubic model, which used the ratio of a near-infrared(NIR) band(740–900 nm) to a visible band(400–600 nm) as factors, provided robust quantification of high SSSC water samples. Two high SSSC centers, with an order of 103 mg/l, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sediment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing.
Accurate assessment of surface suspended sediment concentration (SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continuous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg / l The results indicated the good correlation between water SSSC and spectral reflectance (Rrs) was obtained in the spectral range of 726-900 nm. At SSSC greater than 2700 mg / L, the 740- 900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The b est correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed (R2 = 0.992). The novel cubic model, which used the ratio of a near-infrared ( NIR band (740-900 nm) to a visible band (400-600 nm) as factors, providing robust quantification of high SSSC water samples. Two high SSSC centers, with an order of 103 mg / l, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sediment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing.