论文部分内容阅读
针对锂电池生产过程中气胀检测依赖于作业人员感觉和经验判断,主观性强且效率低的情况,提出一种基于机器视觉的气胀锂电池在线检测方法。特定角度和强度光源照射下,气胀电池与合格电池呈现不同的反射光斑分布。基于此特点,提取电池图像反射光斑区域特征作为分类器的输入。为满足在线检测系统实时性要求高的特点,提出粗糙集属性约简与C-SVM相结合的方法建立分类模型。首先基于属性重要度的粗糙集属性约简方法优选样本特征集,然后采用K折交叉验证和网格搜索法对C-SVM进行参数寻优,建立分类模型。实验结果表明,属性约简的锂电池检测方