论文部分内容阅读
To validate the protective efficacy against schistosomiasis by immunization with cells from juvenile Schistosoma japonicum in a murine model and to analyze possible factors related to protection, in this study, two independent repeated vaccination trials were performed. After three subcutaneous vaccina- tions, in trial one, in the absence of adjuvant, primary juvenile worm cells (pJCs) from S. japonicum induced remarkable average reductions in worm burden (54.3%), liver eggs per gram (LEPG) load (59.8%) as well as egg granulomas size (66.5%) compared to PBS control group (P<0.01), which were significantly higher than those elicited by fractions of juvenile worm cells (JCFs) or fractions of juvenile worms (JWFs) (P<0.05). Non-cell components of worms (WNCs) showed no significant protection. In trial two, compared to PBS control group, significant protective effect was also observed for cultured juvenile worm cells (cJCs) from S. japonicum with 58.4% worm reduction and 68.1% LEPG reduction (P<0.01). However, cultured adult worms cells (cACs) showed significantly higher worm burden (P<0.05) and egg burden (P<0.01) when compared to cJCs. Immunological analysis of trial two revealed that cJCs engendered a Th1-biased mixed Th1/Th2 type of immune response while cACs elicited a Th2-type response. Our data indicated that immunization with both primary and cultured cells from S. japonicum juvenile worms provided high immunoprotection, for which the physical character of immunogens, stage-specific parasite and the type of immune response induced might be responsible, suggesting that vaccination with whole cells from S. japonicum larvae is a promising approach to produce protec- tive immunity against schistosomiasis.
To validate the protective efficacy against schistosomiasis by immunization with cells from juvenile Schistosoma japonicum in a murine model and to analyze possible factors related to protection, in this study, two independent repeated vaccination trials were performed. After three subcutaneous vaccina- tions, in trial one , in the absence of adjuvant, primary juvenile worm cells (pJCs) from S. japonicum induced remarkable average reductions in worm burden (54.3%), liver eggs per gram (LEPG) load (59.8%) as well as egg granulomas size %) compared to PBS control group (P <0.01), which were significantly higher than those elicited by fractions of juvenile worm cells (JCFs) or fractions of juvenile worms (JWFs) WNCs) showed no significant protection. In trial two, compared to PBS control group, significant protective effect was also observed for cultured juvenile worm cells (cJCs) from S. japonicum with 58.4% worm reduction and 68.1% LEPG reducti (P <0.01). However, cultured adult worms cells (cACs) showed significantly higher worm burden (P <0.05) and egg burden (P <0.01) when compared to cJCs. Immunological analysis of trial two cJCs engendered a Th1 -biased mixed Th1 / Th2 type of immune response while cACs elicited a Th2-type response. Our data indicated that immunization with both primary and cultured cells from S. japonicum juvenile worms provided high immunoprotection, for which the physical character of immunogens, stage- specific parasite and the type of immune response induced might be responsible, suggesting that vaccination with whole cells from S. japonicum larvae is a promising approach to produce protecive immunity against schistosomiasis.