论文部分内容阅读
提出了一种改进的粒子群算法,很好地解决了基本粒子群算法中易陷入局部最优的缺点。通过比较和分析几个标准测试函数的计算结果,改进的粒子群算法的优良性得到充分的证明。改进的粒子群算法被用于优化神经网络的结构和参数,结果表明:不但网络的结构得到控制,而且泛化性能有了较大的提高。同时,算法在优化神经网络上的有效性也在4-CBA含量的软测量建模中得到了很好的证实。