论文部分内容阅读
为使提取到的独立成分有利于人脸的分类识别,在用核独立成分分析(KICA)进行特征提取后,选用改进后的k最近邻的Relief方法进行特征选择。改进后的Relief算法可以减少噪声污染,并能处理小样本问题,使选择后的人脸特征较好地用于分类。通过在AR人脸库上的实验,并与类内类间距离的特征选择方法进行比较,证明了该方法的有效性。