论文部分内容阅读
Cognitive radio sensor network is applied to facilitate network monitoring and management, and achieves high spectrum efficiencies in smart grid. However, the conventional traffic scheduling mechanisms are hard to provide guaranteed quality of service for the secondary users. It is because that they ignore the influence of diverse transition requirements in heterogeneous traffi c. Therefore, a novel Qo S-aware packet scheduling mechanism is proposed to improve transmission quality for secondary users. In this mechanism, a Qo S-based prioritization model is established to address data classification firstly. And then, channel quality and the effect of channel switch are integrated into priority-based packet scheduling mechanism. At last, the simulation is implemented with MATLAB and OPNET. The results show that the proposed scheduling mechanism improves the transmission quality of high-priority secondary users and increase the whole system utilization by 10%.
However, the conventional traffic scheduling mechanisms are hard to provide guaranteed quality of service for the secondary users. It is because that they ignore the influence of the various transition requirements in heterogeneous traffi c. Thus, a novel Qo S-aware packet scheduling mechanism is proposed to improve transmission quality for secondary users. In this mechanism, a Qo S-based prioritization model is established to address data classification first. And then, channel quality and the effect of channel switch are integrated into priority-based packet scheduling mechanism. At last, the simulation is implemented with MATLAB and OPNET. The results show that the proposed scheduling mechanism improves the transmission quality of high-priority secondary users and increase the whole system utilization by 10%.