“问题+表格”化思维,破解教学关键问题

来源 :中国数学教育(初中版) | 被引量 : 0次 | 上传用户:yigeyige
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在知识教学与素养培养的过程中,需要核心问题作为载体嵌入其中,对学生的学习思维起到激发、指导和构建的作用.表格化的教学处理可以让知识要素更加集中,呈现更加直观,更能显示知识之间的联系和区别,易于学生发现知识之间的关系.利用“问题+表格”化思维设计落实知识与素养的教学过程,能有效破解教学中的关键性问题,增强学生学习数学的能力,切实提升教师素养和学生的思维水平与学习习惯.
其他文献
在章起始课教学中有效构建并使用“数学导游图”是在整体统领观念下实施教学的一种策略.建构章节学习的“数学导游图”,既是先前学习经验的外化,又为后续其他类似数学对象的学习积累了新的经验,丰富了数学研究的范式.依据这一理念,以“认识三角形”一课的教学设计为例进行说明.
通过对一节展示课的观课和思考,阐述数学教学应基于“四个理解”设计和实施教学,借助几何画板软件进行数学实验,体现探究过程.通过学生积极参与数学活动,培养并发展学生的数学学科核心素养.
以知识结构的视角剖析了习题课的内涵特征和主要任务,从实例中阐释了习题课设计的基本途径,并提炼了习题课设计的三条基本原则——整体性、结构性、关联性.
对一节教学效果不太理想的课进行反思,分析教学设计中存在的问题,以深度教学中的U型模式作为理论基础,对教学设计进行再加工、再创造.通过前后两次教学设计的对比,达到深度教学,改进教学过程中存在的问题,实现对教学活动的理性思考.
“四基”是学生数学思维品质发展的基础.文章以“圆中的相似三角形”专题复习课观课为例,阐述对“圆中的相似三角形”的理解,从教学起点、问题设置、教师导学、教学立意四个方面进行对比分析,指出专题复习设计应立足“四基”,设置适切的问题情境,适时合理地提问引导,聚焦学生的数学思考,以培养学生数学思维的深刻性、灵活性、独创性、批判性和敏捷性,发展学生的数学思维品质.
改革作业形式,尝试以拓展性作业的形式分组研讨阅读材料,转变阅读材料为简单的材料阅读这一教学现实困境,允许学生就阅读材料上的问题或与之相关的问题自由拓展,以拓展促进深度学习,突破学科知识的年段限制和课堂时间与空间的束缚,促使阅读材料能真正成为体现学生自主探究、合作交流、拓展学习内容、转变学习方式的另一主阵地.
在一般观念的指导下,以“等腰三角形”为例进行教学设计,探索研究一个几何对象的“基本套路”.通过整体架构,在学生明确等腰三角形的研究路径、研究内容和研究方法的基础上,引导学生经历完整的解决问题的过程,从而积累可以有效迁移的基本活动经验,用相似的方法来研究有内在逻辑关联的不同数学对象.
[目的]分析高校学报的整体现状,并调研2013—2020年高校学报的更名情况,以期为高校学报更名提供数据支撑.[方法]依托维普中文科技期刊数据库,从宏观角度统计分析高校学报的更名情况,利用国家新闻出版署官方网站具体分析高校学报更名事项,采用文献调研法和类比法分析高校学报更名后面临的问题和发展措施.[结果]高校学报更名时有发生,且高校学报更名比例略高于学术期刊总体的更名比例.根据更名原因将高校学报更名分为被动更名和主动更名,其中因主管、主办单位等变更引起的学报“被动更名”占更名学报总量的59.1%,学报为转
随着课程改革的推进,深度学习越来越得到广大教师的认可和关注,深度学习的内涵是深入知识内核的学习,是开展问题解决的学习.文章通过三个课堂案例,引导学生有深度地自我构建,有深度地自我反思学习,有深度地探究学习,并从这三个方面进行反思与提出建议.
在“借助双曲线画平行线”的专题性习题课中,以“反比例函数的图象与性质的应用”为主题,以“画平行线”为主线,以“整体关联”为变式,基于“数学现实”,设置“生长性问题”驱动探究;基于“类比探究”,注重方法内化培育核心素养.