考虑热负荷的分动器动力传递特性分析

来源 :自动化应用 | 被引量 : 0次 | 上传用户:zhoudeyou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
分动器是四驱汽车的关键部件之一,在运转传动的过程当中,影响其传递特性的因素比较多.为了能更好地了解其性能,获得分动器在连接传递过程当中的特性规律,探究热负荷影响下的分动器动力传递特性.通过建立分动器力学模型,利用模型可研究热负荷下分动器接合过程中的不同温度、压力以及润滑油的黏度参数变化,在分动器在工作过程当中,预测因为摩擦所导致的传递特性的规律,这些分析为实现分动器动力精准传递提供依据.
其他文献
The asymmetric input-constrained optimal synch-ronization problem of heterogeneous unknown nonlinear multiagent systems (MASs) is considered in the paper. Intuitively, a state-space transformation is performed such that satisfaction of symmetric input con
The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current (DC) motor driven by a buck converter. By lumping all unknown matched/unmatched disturbances and uncertainties together, the tradi
In this paper, a new recursive least squares (RLS) identification algorithm with variable-direction forgetting (VDF) is proposed for multi-output systems. The objective is to enhance parameter estimation performance under non-persistent excitation. The pr
A large-scale dynamically weighted directed network (DWDN) involving numerous entities and massive dynamic interaction is an essential data source in many big-data-related applications, like in a terminal interaction pattern analysis system (TIPAS). It ca
Random vector functional ink (RVFL) networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected. Their network structure in which contains the direct links between inputs and outputs is unique, and stab
Dear editor,rnThis letter presents a deep learning-based prediction model for the quality-of-service (QoS) of cloud services. Specifically, to improve the QoS prediction accuracy of cloud services, a new QoS prediction model is proposed, which is based on
Dear editor,rnDeep reinforcement learning (DRL), combining the perception capability of deep learning (DL) and the decision-making capability of reinforcement learning (RL) [1], has been widely investigated for autonomous driving decision-making tasks. In
Dear editor,rnThis letter presents an unsupervised feature selection method based on machine learning. Feature selection is an important component of artificial intelligence, machine learning, which can effectively solve the curse of dimensionality proble
针对肿瘤基因数据的样本小、维度高特点,为解决小样本对分类准确率的影响,提出对样本进行扩充的方法;结合特征获取的方式不同,将主成分分析(PCA)、核主成分分析(KPCA)和非负矩阵(NMF)特征进行组合,再通过鲁棒性更强的堆栈自动编码器(SDAE)和Softmax进行分类.实验表明,经过合理的样本特征组合及小样本扩充能够有效提升分类效果.
随着自动驾驶技术要求的提高,汽车的主动功能安全技术需要更加精确的环境感知系统.在低等级辅助驾驶中,很多厂商运用毫米波雷达和相机融合的方案来解决目标检测的问题.基于现有理论,提出一种基于嵌入式平台的多传感器融合方法.采用赛灵思硬件开发板,将Yolov5视觉算法在嵌入式开发板进行移植,通过神经网络、硬件加速等技术进行目标的实时检测.之后将对毫米波雷达进行选型、标定,将其部署在嵌入式平台上.基于滤波理论对两个传感器信息进行目标级的融合,继而实现对融合后的目标进行实时跟踪.