基于模糊神经网络的微博舆情趋势预测方法

来源 :情报科学 | 被引量 : 0次 | 上传用户:luffyzl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
【目的/意义】微博舆情对社会各领域的影响与日俱增,但由于其影响因素众多,呈现出非线性且复杂的变化。因此,如何快速、准确地预测其发展趋势是一个很有价值的研究课题。【方法/过程】以微博话题的博文总数作为微博话题发展趋势的量化指标,考虑话题发展的复杂性和非线性的特点,采用模糊神经网络来预测微博话题的发展趋势。并通过改进的粒子群优化算法对模糊神经网络的参数进行优化以更好的发挥模糊神经网络在处理非线性、模糊性等复杂问题上的优越性。【结果/结论】通过对新浪微博数据集的对比实验,验证了本文所提方法的有效性和准确性。本文方法有效解决了微博舆情趋势预测中遇到的模型参数复杂、易陷入局部最优的问题,提高了微博舆情发展趋势预测的准确性。
其他文献
【目的/意义】研究微博网络中话题式信息的传播模型及规律,对控制舆论和掌握微博信息传播规律具有重要意义。【方法/过程】以微博信息传播中的SEIR模型为出发点,综合考虑微博
仿古菜,是仿照古代菜肴制作的菜品。仿古菜以历史文献、档案资料、古典名著等记述和文物资料为依据,按照“古为今用、推陈出新”的原则研制而成。仿古菜带有浓厚的复古色彩,