论文部分内容阅读
为了提高人体动作识别的准确率和实时性,提出了一种基于关键帧的人体行为识别新方法。用Kinect提取人体骨架信息(各关节点的3D坐标),将中心点(人体基准参考点)分别与其他各关节点作结构向量,根据空间不变性选取中心向量,计算各个结构向量和中心向量之间的夹角,并将夹角的角速度作为一种新的姿态描述特征,利用AP(Affinity Propagation)聚类算法提取关键帧,利用SVM将得到的关键帧进行动作序列的分类。在Cornell Activity Dataset-60(CAD-60)数据库实验结果表明