论文部分内容阅读
随机抽样技术已经广泛应用于数据挖掘的各类算法中,它在处理分布均匀的数据集时非常有效,但在处理分布比较倾斜的数据集时容易丢失小的聚类。为此提出基于网格的密度偏差抽样算法,仅需要扫描一遍数据集就可以得到近似的密度偏差抽样。经实验测试分析表明,该算法不仅提高了聚类的正确性,而且抗噪声能力强、效率高,是解决海量数据挖掘的一种有效途径。