论文部分内容阅读
温室黄瓜霜霉病严重度的准确估算是科学防治霜霉病的前提条件,对于减少农药使用量、提升温室黄瓜品质和农民经济效益具有重要意义。机器学习在植物病害诊断领域的应用越来越广泛,已经取得了丰富的研究成果,病害严重程度的估算萌发了新的思路。利用霜霉病可见光图像并结合机器学习方法,开展温室黄瓜霜霉病严重度快速准确定量估算研究。利用数码相机采集温室黄瓜霜霉病叶片图像并进行预处理,剔除病害图像的背景。以黄瓜霜霉病叶片图像为输入,构建基于卷积神经网络(CNN)的估算模型。利用可见光光谱颜色特征(CVCF)结合支持向量机进