论文部分内容阅读
The effect of plasma and brine lubricants on the friction and wear behavior of UHMWPE were studied by using the geometry of a Si3N4 ball sliding on a UHMWPE disc under patterns of uni-directional reciprocation and bi-directional sliding motions. The worn surface and wear particles produced in these two lubricants were analyzed. Sliding motion pattern affected the friction coefficients lubricated with plasma,while seldom affected that lubricated with brine. UHMWPE lubricated with plasma showed about half of the wear rate of that lubricated with brine. The two rates were 0.75 pg/m and 2.19 pg/m for the two motion patterns,respectively. However,wear particles generated in plasma included a greater amount of small particles,compared to that in brine. In uni-directional reciprocation,the main wear mechanism is ploughing both in plasma and in brine. In bi-directional sliding modes,the significant characteristic is ripples on the worn surface in plasma,while there are oriented fibers on the worn surface in brine.
The effect of plasma and brine lubricants on the friction and wear behavior of UHMWPE were studied by using the geometry of a Si3N4 ball sliding on a UHMWPE disc under patterns of uni-directional reciprocation and bi-directional sliding motions. The worn surface and wear particles produced in these two lubricants were analyzed. Sliding motion pattern affected the friction coefficients lubricated with plasma, while seldom affected that lubricated with brine. UHMWPE lubricated with plasma showed about half of the wear rate of that lubricated with brine. The two rates were 0.75 pg / m and 2.19 pg / m for the two motion patterns, respectively. However, wear particles generated in plasma included a greater amount of small particles, compared to that in brine. In uni-directional reciprocation, the main wear mechanism is plowing both in Plasma and in brine. In bi-directional sliding modes, the significant characteristic is ripples on the worn surface in plasma, while there are oriented fibers on the w orn surface in brine.