论文部分内容阅读
The oxidation of PM Cu 50Cr, MA Cu 40Cr and MS Cu 40Cr alloys at 800 ℃ in 0.1 MPa O 2 was studied. The most important difference of their oxidation behaviors is the formation of an exclusive chromia scale on the surface of the MS Cu 40Cr alloy and a continuous chromia layer beneath an outer CuO layer corresponding MA Cu 40Cr alloy, while a complex scale composing of CuO, Cu 2O, Cu 2Cr 2O 4 and Cr 2O 3 formed on the PM Cu 50Cr alloy. This result implies that alloy microstructure affects their oxidation behaviors largely. Microcrystalline structure provides numerous diffusion paths for reactive component chromium, shorter diffusion distance and rapid dissolution of Cr riched second phase. All these favor the exclusive formation of the most stable oxide. [
The oxidation of PM Cu 50Cr, MA Cu 40Cr and MS Cu 40Cr alloys at 800 ° C in 0.1 MPa O 2 was studied. The most important difference of their oxidation behaviors is the formation of an exclusive chromia scale on the surface of the MS Cu 40Cr alloy and a continuous chromia layer beneath an outer CuO layer corresponding to MA Cu 40Cr alloy, while a complex scale composing of CuO, Cu 2O, Cu 2Cr 2O 4 and Cr 2O 3 formed on the PM Cu 50Cr alloy. This result implies that alloy microstructure All their favor the formation of the most stable oxide [