无线传感器网络中基于规范的入侵检测算法研究

来源 :计算机应用研究 | 被引量 : 12次 | 上传用户:shuaigekk1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了解决无线传感器网络的安全问题,提出了一种基于规范的入侵检测算法。该算法根据概率论的有关理论,对邻域节点的单位时间特征量设定阈值,阈值的设定方法具有通用性,并且阈值自适应更新,符合传感节点性能随着时间发生变化的特点。将检测节点获得的单位时间特征量值与阈值进行对比来判断入侵。通过仿真实验验证了该算法优于其他基于规范的入侵检测方案,不仅能够满足高检测率低误报率的要求,还具有较好的能效性。
其他文献
针对GMM应用于情感识别时区分能力较弱的缺点,提出了一种将GMM与SVM有效结合的算法:基于GMM-UBM多维概率输出的SVM语音情感识别方法。该方法将GMM-UBM模型对一条语音的情感特征参数的两种多维概率输出(与特征向量同维、与GMM阶数同维)作为SVM分类器的特征参数,既利用了GMM表征数据本身统计特性的能力,又保留了SVM判决能力强的特点。在柏林情感语音库与汉语情感语料库上进行的实验结果表
在IEEE 802.11s的树型网络中,为了解决子节点之间洪泛PREQ维护路由时引发的PREQ广播风暴问题,基于HWMP的表驱动路由,提出了一种限制PREQ广播范围的广播风暴抑制方案。在该方案中,子节点根据自己到根节点的路由跳数设置PREQ的TTL,缩小了PREQ的传输距离,降低了冗余PREQ的数量。实验结果表明,与IEEE 802.11s相比,本方案有效地减小了网络中的路由开销,提高了网络吞吐量
针对电梯控制系统故障诊断困难及诊断准确率不高的问题,提出一种基于信息融合技术的故障诊断方法。通过优化网络学习率与激活函数的倾斜度,对BP神经网络进行改进,使得网络非线性分类能力更强,收敛效率更高。利用电梯控制开关量信号和电梯运行模拟量参数作为神经网络分类器的特征,应用D-S证据理论合成法则将多个分类器的结果进行融合判决,使证据理论的基本可信度分配不再完全依赖专家进行主观化赋值,实现了赋值的客观化。
首先概述了利用P2P系统进行DDoS攻击的原理,并根据攻击方式的不同将现有研究划分为主动攻击和被动攻击两种。综述了当前针对基于P2P的DDoS攻击的防御方法,分别从基于验证的方法、基于成员管理的方法、基于信誉的方法和受害者端的方法四个方面进行说明。最后,从推动P2P网络安全和Internet网络安全的角度出发,对基于P2P的DDoS攻击及其防御技术未来的研究方向进行了探讨。
模糊Sarsa学习(FSL)是基于Sarsa学习而提出的一种模糊强化学习算法,它是一种通过在线策略来逼近动作值函数的算法,其每条模糊规则中,动作的选择是按照Softmax公式选择下一个动作。对于连续空间的复杂学习任务,FSL不能较好平衡探索和利用之间的关系,为此提出了一种新的基于蚁群优化的模糊强化学习算法(ACO-FSL),主要工作是把蚁群优化思想与传统的模糊强化学习算法结合起来形成一种新的算法。
在输电线路在线监测的应用中,无线传感器网络存在严重的能耗不均衡问题。利用这些无线传感器网络在线状拓扑上呈现出的线性、规律性的局部密集的特征,提出了基于密集簇的分簇及簇首轮换算法和基于命名机制的路由算法。该算法具有很好的可扩展性,可通过增加少量的转发节点来缓解簇间能耗不均衡的问题。仿真结果验证了算法在能耗均衡方面的有效性,能够延长网络的生存时间。
为了高效地获取与主题相关的资源,就垂直搜索引擎展开了研究。首先,在现有的PageRank算法基础上,提出一种改进的PageRank算法来测量网页的链接相似度;其次,从单个网页考虑,利
分析K-Medoids算法的内在并行性,设计一个适合多核平台的并行算法,并利用OpenMP进行实验。实验结果表明,并行算法对多核环境有很好的适应性,在双核及四核计算机上均获得了较好的加速比与运行效率。
研究时间依赖路网(TDN)的最短路径规划算法,对指导人们出行和解决城市交通等问题具有十分重要的意义。在研究前人算法的基础上,提出了一种利用结构体数组来求解TDN路网最小时间路径规划算法。对算法的基本原理和结构体数组的构造进行了介绍,对算法实现流程及其中一些关键步骤进行了重点阐述,最后在VC++环境中利用MapX控件对算法进行了实验仿真。仿真结果表明,该算法具有较高的搜索效率,且能适应路况变化,基本