基于51与K66双芯片的智能小车控制系统

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:yuanli1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文提出一种新的智能小车主动及被动控制手段,采用STC89C51RC与K66双芯片实现对智能小车的控制.运用蓝牙通信技术实现通过手机端APP控制小车进行基本动作,同时利用超声波测距技术实现小车自动避障.此外,还加入了红外探测传感器以实现小车的自动循迹,结合低功耗的MT9V032摄像头,利用图像识别技术实现了信标灯寻的.实验测试结果表明该移动小车在光照条件适当的情况下具备良好的循迹性能,在小车速度为20 cm/s时避障准确率达到99%,能够以3.1 m/s的稳定速度识别到直径为7.85 m辐射范围内的信标灯.
其他文献
随着软件项目规模的增大与复杂性的增加,测试过程产生了大量的错误报告,其中重复的错误报告广泛存在.重复错误报告的存在,降低了开发人员修复错误的效率.重复错误报告预测可有效地避免重复错误报告的产生,是近年来的热门研究方向之一,但其效率及准确率有待提高.为此,提出一种基于语义扩展连续查询的重复错误报告预测方法,通过构建基于主题模型的错误报告索引词库,对查询词序列进行语义扩展,采用基于连续查询的错误报告检索算法,在缩小索引空间的同时,提升了预测准确率与效率.实验表明,相较于传统重复错误报告预测方法,该方法减小了5
为加强IP地址、自治域号等国际互联网码号资源的管理和控制,国际互联网工程任务组提出了互联网码号资源公钥基础设施,近年来有效解决路由劫持、路径篡改等问题,为保证域间路由稳定运行发挥了巨大作用.然而,它在互联网码号资源管理模式中存在的安全问题也逐渐突显,如单点故障、资源分配异常、证书撤销数据同步不及时造成验证失效等.本文针对上述安全问题,提出了一种基于可修改区块链的互联网码号资源管理方案,并通过实验验证了该方案的有效性和可行性.
随着目标检测模型的日趋成熟,基于检测的追踪成为多目标追踪研究的主要方向.借助几乎完美的目标检测结果,在数据关联时可以采用只使用IoU信息的方法.但是在实际使用中,少量丢失的检测会造成大量的身份互换和轨迹断裂,进而严重影响追踪效果.针对这一问题,该算法引入图像信息,使用IoU模型进行初步追踪,结合行人特征向量对初步追踪的结果进行校验,对没有通过校验的轨迹进行再匹配.对于目标间遮挡的问题,该算法采用预测目标的运动轨迹,提前采取措施的方法应对.该算法采用MOT16和2DMOT15数据集进行实验,均取得了较好的效
针对边缘设备随着接入的分支机构增多,需处理的公网与私网数据爆增,导致边缘设备负载过重,影响数据的正常交互.为此,分析了产生问题的根源,提出了网络设备虚拟化技术与多协议标签交换与边界网关协议技术相融合的解决方案.为验证方案的可行性,借助实验室设备,搭建了方案所需环境,完成了方案的部署.部署完成后对方案的可用性、数据访问控制与隔离、数据的分布式处理与负载分担进行了测试,并与传统方式在设备冗余性、扩展性、管理性等10个维度进行了对比.测式与对比结果表明,该方案能在边缘设备上实现数据的分布式处理与负载分担,优于传
加工特征识别是实现CAD/CAPP/CAM系统集成的关键技术.针对传统基于符号推理加工特征识别模式存在鲁棒性问题,提出一种基于加工面点云数据深度学习的加工特征自动识别方法;基于PointNet点云识别框架,构建了一个面向加工面点云数据的加工特征自动识别卷积神经网络;通过收集CAD模型中的加工特征面集和采样点云,构建了适合该网络学习的三维点云数据样本库.通过样本训练获得加工特征识别器,实现了24类机械加工特征的自动识别,识别准确率达到99%以上,该方法简洁、高效,对有噪音和缺陷的点云数据不敏感,并且对由于特
随着人们生活水平的提高,空调成为家居工作必不可少的一部分.传统空调PID控制技术仍被广泛应用,但其存在参数控制不精确、突变性、滞后性等问题,如何精确地控制空调参数,提高空调控制系统的性能成为空调控制领域研究的热点.针对这些问题,本文基于模糊推理提出了一种空调智能控制机制,通过对参数模糊化、规则库构建、模糊推理等步骤实现空调的模糊控制.实验证明了本方法的可行性,并进一步验证了在处理非精确问题方面与PID相比具有较大优势.系统实现部分给出了空调智能控制的具体交互过程.
大屏数据可视化是对数据分析结果的表达,是数据赋能决策的重要环节.针对大屏数据可视化软件开发周期较长、成本较高等问题,本文基于Vue前端框架及Echarts可视化组件,研制开发了一个大屏数据可视化易用工具C317DataUI,通过对可视化组件拖拽式操作进行界面布局,使用组件的数据连接面板进行数据配置管理,并提供了部分场景模板,可以快速实现大屏数据可视化的应用表达,满足行业用户进行数据可视化表达时低成本,高效率的需求.
本文将深度强化学习应用于二维不规则多边形的排样问题中,使用质心到轮廓距离将多边形的形状特征映射到一维向量当中,对于在随机产生的多边形中实现了1%以内的压缩损失.给定多边形零件序列,本文使用多任务的深度强化学习模型对不规则排样件的顺序以及旋转角度进行预测,得到优于标准启发式算法5%-10%的排样效果,并在足够次数的采样后得到优于优化后的遗传算法的结果,能够在最短时间内得到一个较优的初始解,具有一定的泛化能力.
旅行商问题(TSP)是经典的NP难问题,对该问题的研究从未停止,也得到了很多的近似求解算法,但每一种算法都各有特色,正因如此,对旅行商问题总有新的算法在提出.麻雀算法是新近提出的算法,本文对麻雀搜索算法(SSA)的原理、搜索策略以及算法的基本流程进行研究分析,针对SSA搜索接近全局最优时,种群的多样性减少,容易陷入局部最优等问题提出一种改进的麻雀搜索算法(ISSA).使用6个标准测试函数与基本SSA以及其他群体智能算法进行仿真实验,测试ISSA的性能.最后应用ISSA对旅行商问题进行求解.实验表明,改进的
针对目前基于批量归一化的ResNet肺炎辅助诊断方法对于批量大小具有较高依赖性、网络通道特征利用率较低,并针对采用深度神经网络的肺炎诊断方法都忽略了医疗数据隐私和孤岛的问题,提出一种融合联邦学习框架、压缩激励网络和改进ResNet的辅助诊断方法(FL-SE-ResNet-GN),运用联邦学习保护数据隐私的同时结合压缩激励网络和组归一化方式充分关注通道特征.通过Chest X-Ray Images数据集的实验结果表明,该方法的准确率、精度和召回率分别达到0.952、0.933和0.974.与其它现有方法相比