论文部分内容阅读
为了充分挖掘成对约束所隐含的信息来指导数据降维和数据聚类,提出一种基于加权成对约束投影的半监督聚类方法.该方法构造成对约束信息的k最近邻集并扩充成对约束集,分析成对约束实例包含的信息量并构造权系数矩阵,在加权成对约束信息的指导下求得投影矩阵,通过投影矩阵将样本数据投影到低维空间,使类内各点紧密分布,类间各点分散分布.同时,通过一种新的评价函数对k均值聚类算法进行改进,能够在尽量不违反成对约束的情况下优化聚类性能,实验结果表明,与现有半监督降维聚类算法相比,新方法能以较低的开销对高维数据进行聚类.