论文部分内容阅读
针对传统FCM算法通常只能检测大小近似相等呈球形或椭球分布的样本子集,而对样本结构、类型、密度分布不均衡的数据集聚类效果不理想等问题,提出一种基于原型初始化的样本隶属度分配方法.首先运用数学形态学理论对聚类原型初始化以获得模糊聚类的原型先验知识,在此基础上设计一种样本隶属分配方法进行样本聚类.理论分析和实验表明,该方法不但可以解决样本集内原型结构差异悬殊的数据集聚类问题,而且具有求解速度快、易于实现等优点.