论文部分内容阅读
目的:帕金森病(Parikinson’s disease,PD)是起始于黑质-纹状体通路多巴胺(dopamine,DA)损耗的一种神经退行性疾病,运动皮层-纹状体通路功能连接强度改变被认为是导致PD运动障碍产生的重要病理基础。通过计算神经信号振荡同步性量化分析皮层-纹状体之间功能连接强度,并从代谢型谷氨酸受体(mGluR2/3)介导的谷氨酸(glutamte,Glu)兴奋性传导角度来阐释运动干预PD的神经调控机制。方法:清洁级SD大鼠随机分为3组:假手术组(Control)、PD组(PD)和PD运动组(PD+Ex),于右侧内侧前脑束(medial forebrain bundle,MFB)注射6-羟基多巴(6-hydroxydopamine hydrobromide,6-OHDA)建立单侧PD大鼠模型。采用阿朴吗啡(apomorphine,APO)旋转行为实验,并结合黑质和纹状体酪氨酸羟化酶(tyrosine hydroxylase,TH)表达水平评价PD大鼠模型的可靠性。PD+Ex组大鼠进行为期4周的跑台运动干预(11 m/min,30 min/天,5天/周),在第0、1、2、3、4周末检测各组大鼠自主活动行为;利用在体多通道电生理技术,观察各组大鼠运动皮层和纹状体局部场电(local field potentials,LFPs)活动;采用微透析-高效液相色谱联用技术检测纹状体胞外Glu浓度,结合生化技术检测纹状体mGluR2/3蛋白表达。结果:自主行为测试结果显示,PD+Ex组较PD组快速和慢速移动时间占比均显著增加(P<0.05),静止状态时间占比显著降低(P<0.05),且大鼠自主活动行为改善效果具有时间依赖性。电生理结果表明,PD+Ex组运动皮层-纹状体β振荡的相干系数和相位同步指数较PD组显著下降(P<0.05),且变化也具有时间依赖性。蛋白检测结果显示,PD+Ex组纹状体mGluR2/3表达较PD组显著上调(P<0.01);递质检测结果显示,PD+Ex组纹状体胞外Glu浓度较PD组显著降低(P<0.01)。结论:PD模型大鼠自主活动行为降低伴随运动皮层-纹状体通路功能连接异常。运动干预通过调节运动皮层-纹状体通路功能连接有效改善PD模型大鼠自�