论文部分内容阅读
摘 要: 竖管跌水井内部设有消能池。雨水或生活废水在消能池内产生紊动射流,在射流过程中,射流液体通过紊流、混掺、扩散与周围液体进行能量交换,起到消能作用。为探讨跌水井直径、入口支管管径水垫深度对消能池的消能性的影响。对不同结构的竖管跌水井,建立数学模型,采用CFD(Computational Fluid Dynamics)流体仿真跌水射流过程,确定跌水井的最小水垫深度,以水流在跌水井底部垂直速度为零作为标准。结果表明,数学模型与CFD仿真结果接近,当流量小于0.147 m3?s时,500 mm水垫深度足够消去跌水动能,减少跌水对跌水井底部产生的垂直动量。
关键词: 跌水井;水垫深度;数值模拟;CFD;紊动射流;消能
中图分类号: TP271 文献标识码: A DOI:10.3969/j.issn.1003-6970.2020.01.037
本文著录格式:陈文,吴张永,徐初旭,等. 基于CFD对竖管跌水井结构与消能性设计[J]. 软件,2020,41(01):170174
【Abstract】: The energy dissipation tank is arranged inside the vertical pipe water-drop well. Rainwater or wastewater go through a water-dropping process, producing a turbulent jet inside the energy-dissipating pool. During the turbulent jet process, the jet fluid exchanges momentum and energy with the surrounding liquid through turbulence, mixing, and diffusion, so as to reduce the velocity of the jet fluid and reduce the energy of the jet fluid, thereby dissipating energy. For the different vertical pipe water-drop well structure, the water cushion depth has an effect on the energy dissipation. In order to explore the minimum water cushion depth of the falling water well, establish a mathematical model, and use the CFD (Computational Fluid Dynamics) fluid to simulate the falling water jet process. The results show that the mathematical model is close to the CFD simulation results. When the flow-rate is less than 0.147 m3?s, the 500mm water cushion depth is enough to eliminate the kinetic energy of the falling water and reduce the vertical momentum generated by the falling water to the bottom of the water-drop well.
【Key words】: Water-drop well; Water cushion depth; Simulation; CFD; Turbulent jet; Energy dissipation
0 引言
跌水井为内部有消能措施的检查井,跌水井的消能措施将消减水流速度,起到消力作用。目前常用的跌水井形式是竖管式和溢流堰式[1-3]。依据《室外排水设计规范》,采用竖管式跌水井且入口管径大于600 mm时,则一次跌水水头高度应按水力计算确定[3-4]。季山等人初步探讨了竖管式跌水工程的结构计算和水力计算,为竖管式跌水的消能率计算奠定基础[5]。
借鉴水坝跌水消能方式的理论分析方法和实验方法,采用CFD(Computational Fluid Dynamics)流体仿真,对跌水井进行结构与消能性研究。现有基本跌水消能方式主要有:底流、面流、挑流、戽斗消能。底流消能是使用最多的消能方式,底流消能的主要特征是紊动射流,射流通过紊动、扩散和混掺与周围水体进行动量和能量的交换,起到消能效果[6-8]。
刘沛清等人分析了水平底板的水跃主要特征,以及水垫塘内淹没冲击射流的基本特征,并得出有关的经验公式[9,10]。李天翔通过试验得出浅水垫消力池的跃后水深计算公式和消能率公式,分析不同来流条件和浅水垫深度对消能率的影响[11]。苏沛兰等人揭示了浅水垫消力池的流速分布、压力分布等水力特性,发现浅水垫消能池有利于降低流速,消能效果显著[12]。李连侠等人发现消力池进口形式对水垫深度影响较大[13]。
1 数学模型计算方法
假设控制体内流体是连续且不可压缩流体,流体运动过程中仅受重力作用,跌水过程不发生掺气现象。跌水井消能数学模型由孔口自由出流模型和圆形紊动射流模型组成。以跌水井处在满负荷工况下,计算跌水井消能池水垫最小深度。
1.1 跌水井结构示意图及设计参数
关键词: 跌水井;水垫深度;数值模拟;CFD;紊动射流;消能
中图分类号: TP271 文献标识码: A DOI:10.3969/j.issn.1003-6970.2020.01.037
本文著录格式:陈文,吴张永,徐初旭,等. 基于CFD对竖管跌水井结构与消能性设计[J]. 软件,2020,41(01):170174
【Abstract】: The energy dissipation tank is arranged inside the vertical pipe water-drop well. Rainwater or wastewater go through a water-dropping process, producing a turbulent jet inside the energy-dissipating pool. During the turbulent jet process, the jet fluid exchanges momentum and energy with the surrounding liquid through turbulence, mixing, and diffusion, so as to reduce the velocity of the jet fluid and reduce the energy of the jet fluid, thereby dissipating energy. For the different vertical pipe water-drop well structure, the water cushion depth has an effect on the energy dissipation. In order to explore the minimum water cushion depth of the falling water well, establish a mathematical model, and use the CFD (Computational Fluid Dynamics) fluid to simulate the falling water jet process. The results show that the mathematical model is close to the CFD simulation results. When the flow-rate is less than 0.147 m3?s, the 500mm water cushion depth is enough to eliminate the kinetic energy of the falling water and reduce the vertical momentum generated by the falling water to the bottom of the water-drop well.
【Key words】: Water-drop well; Water cushion depth; Simulation; CFD; Turbulent jet; Energy dissipation
0 引言
跌水井为内部有消能措施的检查井,跌水井的消能措施将消减水流速度,起到消力作用。目前常用的跌水井形式是竖管式和溢流堰式[1-3]。依据《室外排水设计规范》,采用竖管式跌水井且入口管径大于600 mm时,则一次跌水水头高度应按水力计算确定[3-4]。季山等人初步探讨了竖管式跌水工程的结构计算和水力计算,为竖管式跌水的消能率计算奠定基础[5]。
借鉴水坝跌水消能方式的理论分析方法和实验方法,采用CFD(Computational Fluid Dynamics)流体仿真,对跌水井进行结构与消能性研究。现有基本跌水消能方式主要有:底流、面流、挑流、戽斗消能。底流消能是使用最多的消能方式,底流消能的主要特征是紊动射流,射流通过紊动、扩散和混掺与周围水体进行动量和能量的交换,起到消能效果[6-8]。
刘沛清等人分析了水平底板的水跃主要特征,以及水垫塘内淹没冲击射流的基本特征,并得出有关的经验公式[9,10]。李天翔通过试验得出浅水垫消力池的跃后水深计算公式和消能率公式,分析不同来流条件和浅水垫深度对消能率的影响[11]。苏沛兰等人揭示了浅水垫消力池的流速分布、压力分布等水力特性,发现浅水垫消能池有利于降低流速,消能效果显著[12]。李连侠等人发现消力池进口形式对水垫深度影响较大[13]。
1 数学模型计算方法
假设控制体内流体是连续且不可压缩流体,流体运动过程中仅受重力作用,跌水过程不发生掺气现象。跌水井消能数学模型由孔口自由出流模型和圆形紊动射流模型组成。以跌水井处在满负荷工况下,计算跌水井消能池水垫最小深度。
1.1 跌水井结构示意图及设计参数