【摘 要】
:
Northeastern China has experienced a significant increase in summer compound hot and dry events (CHDEs), pos- ing a threat to local agricultural production and sustainable development. This study investigates the detectable an- thropogenic signal in the l
【机 构】
:
Key Laboratory of Meteorological Disaster of Ministry of Education/Joint International Research Labo
论文部分内容阅读
Northeastern China has experienced a significant increase in summer compound hot and dry events (CHDEs), pos- ing a threat to local agricultural production and sustainable development. This study investigates the detectable an- thropogenic signal in the long-term trend of CHDE and quantifies the contribution of different external forcings. A probability-based index (PI) is constructed through the joint probability distribution to measure the severity of CHDE, with lower values representing more severe cases. Response of CHDE to external forcing was assessed with simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6). The results show a significant in- crease in the severity of CHDE over northeastern China during the past decades. The trend of regional averaged PI is ?0.28 (90% confidence interval: ?0.43 to ?0.13) per 54 yr and it is well reproduced in the historical forcing simula- tions. The attribution method of optimal fingerprinting was firstly applied to a two-signal configuration with anthro- pogenic forcing and natural forcing; the anthropogenic impact was robustly detected and it explains most of the ob- served trend of PI. Similarly, three-signal analysis further demonstrated that the anthropogenic greenhouse gases dominantly contribute to the observed change, while the anthropogenic aerosol and natural forcing have almost no contribution to the observed changes. For a compound event concurrently exceeding the 95th percentile of surface air temperature and precipitation reversal in the current period, its likelihood exhibits little change at 1.5℃ global warm- ing, but almost doubled at 2.0℃ global warming.
其他文献
利用荆州6个国家气象站1989—2018年的夏季逐日平均气温、相对湿度、风速等气象要素,采用与经典人体舒适度模式计算及评判结果对比分析的方法,建立荆州夏季人体舒适度模型,确定人体舒适度评判标准,并用湖北近30 a气象资料对各区域人体舒适度进行适用性分析.结果表明:荆州6市(县)一年中各有3个月的舒适期,松滋还有2个月的较舒适期,松滋气候条件最佳;湖北各区域30 a平均人体舒适度指数月分布均呈“W”型;鄂西南是湖北避暑胜地,松滋是荆州避暑胜地.
生态景区预报以精准对接个性化人群需求,能够预报出樱花、牡丹花、杜鹃花、荷花的盛开期,红叶的最佳观赏期,雪质的松软程度,避暑/避寒的舒适度指数外,还能够辅助出游人群,给出引导建议.近几年,北京市气象局就开始对樱花花期进行观测和预报;上海市气象局与上海市桃研所开展物候资料共享和研究;红叶最佳观赏期预报已经从图文内容延伸到各省的红叶直播中去,将最佳的红叶观赏期的美景通过实景、短视频的方式进行跟踪服务;“中国天气”已将全国十大热门滑雪场雪质预报进行全网宣推,并提供十大热门滑雪场的周末天气预报;避暑/避寒活动已经各
建党百年来,中国共产党始终重视人才培养.其中,科技教育培训事业一直是我党人才队伍建设中的战略性工程.作为一项科技型事业,党的气象事业从无到有,规模从小到大,发展了半个多世纪,取得了显著成绩,赢得了国际声誉.在气象事业发展过程中,也创造和积累了许多科技人才培养的宝贵经验.
冷空气堆积(cold air damming,CAD)是低层冷空气受地形阻挡产生的一种中尺度天气现象,北半球通常发生在山脉的东侧,造成云量增加、温度降低以及降水类型和降水落区的改变.CAD全年都会发生,冷季常造成冻雨天气,暖季往往会触发雷暴、大风、冰雹等强对流天气.在地形作用下地转适应关系的重新调整是CAD形成的动力基础,但冷平流、绝热冷却和非绝热冷却等热力因子对CAD的形成和发展也至关重要.尽管中尺度数值模式显著提高了CAD事件的预测能力,但这些模式仍有低估CAD影响和持续时间的倾向,即便是快速更新的高
2022年北京冬奥会开幕式的精彩让全球重新认识了雪花以及冰雪运动的魅力.通过人工造雪,冬奥会及各类冰雪运动更广泛地覆盖到更多的人群,但与此同时也会带来一个问题:人造雪和自然雪的运动体验是否不同?要回答这个问题,可以从雪花的形成说起.
刚刚过去的2021年,全球气象界的一个热点,是以“机器学习”(machine learning,ML)和“神经网络”(neural network,NN)等为代表的AI技术,从几年前有“炒作”嫌疑和爆炸式的登场,到开始入驻气象研究和业务各领域并产生效果和积极影响的过渡年.伴随这样的过渡,“trustworthy”一词被很多学者加在AI之前,组成“可信的AI”.强调AI技术可信,既与AI技术本身的神奇有关,还是现代气象科学本身“物理求真”的传统使然.
The undersea volcano, located in the South Pacific island nation of Tonga, violently erupted from 14 to 15 January 2022. The Tonga volcano eruption has aroused extensive discussion in the climate change field. Some climatologists believe that this event w
An exceptional rainy season occurred in the Yangtze River valley of eastern China in June–July 2020. The relative importance of the dynamic and thermodynamic effects on this unusual event is evaluated through the budget equa- tions of moisture and moist s
With the advent of the phased array radar (PAR) technology, it is possible to capture the development and evolu- tion of convective systems in a much shorter time interval and with higher spatial resolution than via traditional Dop- pler radar. Research o
In this study, the unprecedented extreme rainfall event during 19–20 July 2021, which caused devastating flooding in Zhengzhou City and its nearby areas, is examined based on observational data analysis and WRF model 40-h sim- ulations on 1-km horizontal