论文部分内容阅读
Development of advanced metals materials with ultrahigh strength,large plasticity and high thermosta-bility is one of the most attractive aims for materials researchers.Co-based bulk metallic glasses(BMGs)with the highest strength(up to 6 GPa)and special strength(up to 650 Nm/g)among all of metals mate-rials so far we known have received extensive attentions.In this paper,a family of Co-Ta-B-Si BMGs with high glass-transition temperature(above 870 K),large compressive plasticity(up to 6.4%)and high strength(above 5.5 GPa),and high glass-forming ability(the critical diameter,Dc:up to 4 mm)was devel-oped by accurately tuning metalloid element contents of Si and B in the parental alloy of Co55Ta10B35.The changes of glass formation and plasticity caused by the adjustment of the constituent metalloid elements were evaluated by the combination of experimental and calculated results.The reason for the significant improvement of plastic deformation is revealed by the analysis of the self-organization behaviors of high-density shear bands.