论文部分内容阅读
多机器人环境中的学习,由于机器人所处的环境是连续状态,连续动作,而且包含多个机器人,因此学习空间巨大,直接应用Q学习算法难以获得满意的结果。文章研究中针对多智能体机器人系统的学习问题,提出自适应模糊RBF神经网络强化学习算法,网络本身具有模糊推理能力、较强的函数逼近能力以及泛化能力,因此,实现了人类专家知识与机器学习方法的结合,减少学习问题的复杂度;实现连续状态空间与动作空间的策略学习。