论文部分内容阅读
针对经典决策树算法构造的决策树结构复杂、缺乏对噪声数据适应能力等局限性,基于多尺度粗糙集模型提出一种新的决策树构造算法。算法引入尺度变量和尺度函数概念,采用不同尺度下近似分类精度选择测试属性构造决策树,使用抑制因子对决策树进行修剪,有效地去除了噪声规则。结果表明该算法构造的决策树简单有效,对噪声数据有一定的抗干扰性,且能满足不同用户对决策精度的要求。